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Abstract 

The rapid spread of COVID-19 is a global public health challenge. To prevent the escalation of 

its transmission, China locked down one-third of its cities and strictly restricted personal mobility 

and economic activities. Using timely and comprehensive air quality data in China, we show 

that these counter-COVID-19 measures led to a remarkable improvement in air quality. Within 

weeks, the Air Quality Index and PM2.5 concentrations were brought down by 25%. The effects 

are larger in colder, richer, and more industrialized cities. We estimate that such improvement 

would avert 24,000 to 36,000 premature deaths from air pollution on a monthly basis.  
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1. Introduction 

The exponential spread of  the COVID-19 pandemic is a global public health crisis. In 

December 2019, an unknown disease, later named COVID-19, was identified in Wuhan, 

China (Lu et al., 2020; Zhu et al., 2020). Within three months, the disease had affected more 

than 100 countries (WHO, 2020). The explosion of  COVID-19 cases around the world has 

made it a global pandemic with devastating consequences (Wang et al., 2020). To contain the 

virus, many countries have adopted dramatic measures to reduce human interaction, 

including enforcing strict quarantines, prohibiting large-scale private and public gatherings, 

restricting private and public transportation, encouraging social distancing, imposing a curfew, 

and even locking down entire cities.  

While the costs of  enforcing these preventive measures are undoubtedly enormous, these 

measures could unintentionally bring about substantial social benefits. Among them, locking 

down cities could significantly improve environmental quality, which would partially offset 

the costs of  these counter-COVID-19 measures. For example, satellite images caught a sharp 

drop in air pollution in several countries that have taken aggressive measures on the 

transmission of  the virus.1 

In this study, we carry out a rigorous investigation into this issue and estimate how 

locking down cities affected air quality in China. We focus on China for two reasons. First, 

China was hit hard by the COVID-19 outbreak, and the Chinese government launched 

 

1 For example, the satellite images show dramatic declines in NO2 in the U.S., China, and Europe:  

US: https://edition.cnn.com/2020/03/23/health/us-pollution-satellite-coronavirus-scn-trnd/index.html;  

China: https://www.earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets- 

over-china; Europe: https://www.eea.europa.eu/highlights/air-pollution-goes-down-as. Relatedly, a news 

article in Forbes provided some rough estimates on the potential benefits caused by lockdowns in China: 

https://www.forbes.com/sites/jeffmcmahon/2020/03/16/coronavirus-lockdown-may-have-saved-77000-

lives-in-china-just-from-pollution-reduction.  
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draconian countermeasures to prevent the escalation of  infections (Chen et al., 2020; 

Kucharski et al., 2020). Nearly one-third of  Chinese cities were locked down in a top-down 

manner, and various types of  economic activities were strictly prohibited. In these cities, 

individuals were required to stay at home; unnecessary commercial operations and private 

and public gatherings were suspended; all forms of  transportation were largely banned (both 

within a city and across cities); and mandatory temperature checking could be found in most 

public facilities. Second, China also suffers greatly from severe air pollution, with some 

estimates suggesting that air pollution is associated with an annual loss of  nearly 25 million 

healthy life years (Kassebaum et al., 2014). If  locking down cities significantly improved the 

air quality in China, the implied health benefits would be an order of  magnitude larger than 

in countries with lower initial pollution levels.  

Because the risk of  disease transmission differed substantially across different locations 

and different periods, the timing of  the lockdowns also varied. We thus estimate a set of  

difference-in-differences (DiD) models to quantify the impact of  a city’s lockdown on air 

pollution. Using air quality data from more than 1,600 monitoring stations in China, we find 

that a lockdown indeed improved the air quality: compared to cities without formal lockdown 

policies, the weekly Air Quality Index (AQI) and PM2.5 concentration in the locked down 

cities declined respectively by 19.4 points (18%) and 13.9 µg/m3 (17%).2 To address the 

concern that cities without formal lockdown policies might also have been affected by the 

disease preventive measures (e.g., all cities extended the Chinese Spring Festival holiday, 

required social distancing, and urged people to stay at home), we estimate another set of  

DiD models, comparing the changes in air pollution levels in these (no-lockdown) cities 

 
2 The Air Quality Index (AQI) is a comprehensive measure of  air pollution in China and also widely used 

around the world. The index is constructed by PM2.5, PM10, SO2, CO, O3, and NO2 concentrations. A lower 

AQI means better air quality. 



5 
 

before and after the Spring Festival relative to the previous year; we find that in these cities 

the AQI and PM2.5 decreased by 8.8 points (7%) and 8.4 µg/m3 (8%). The overall 

improvement in both AQI and PM2.5 due to the counter-COVID-19 measures is estimated 

to be around 25% in locked down cities and 7~8% in other cities. 

The effect of  a lockdown differs considerably across different types of  cities. We find 

that the richer, more industrialized, and colder cities experienced larger reductions in air 

pollution levels. For example, we estimated that the lockdown reduced the AQI by more than 

30 points in cities with more manufacturing output, which is three times larger than its impact 

on cities with lower manufacturing output.  

The remarkable improvement in air quality has three important implications. First, it 

could potentially bring about massive health benefits. A back-of-the-envelope calculation 

shows that the improved air quality induced by the counter-COVID-19 measures could avert 

24,000 to 36,000 premature deaths on a monthly basis. Because air pollution also affects 

morbidity, productivity, and defensive expenditure (e.g., air filters), the implied benefits could 

be even greater if  such improvement could be sustained (e.g., Deschênes et al., 2017; Barwick 

et al., 2018; Zhang et al., 2018; Ito and Zhang, 2020). Second, our findings confirm the 

intuition that traffic, industrial, and business activities are important sources of  air pollution. 

This provides a benchmark for future environmental regulation and highlights the necessity 

to control emissions from these sources when business goes back to normal. Finally, while 

the air quality improvement during this period was unprecedented, the air pollution levels 

during the lockdown remained high. For example, the PM2.5 concentration in locked down 

cities was still more than four times higher than WHO considers safe (10 µg/m3 for the 

annual mean) (WHO, 2005), even though almost all non-essential production and business 

activities were suspended. This finding suggests that other sources of  air pollution continue 
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to contribute significantly; in particular, the coal-fired winter heating system could be the 

primary polluting source during our study period (Chen et al., 2013; Ebenstein et al., 2017). 

Our research highlights that, without further reducing its reliance on coal, it will be a real 

challenge for China to win its “war against pollution” (Greenstone and Schwartz, 2018; 

Greenstone et al., 2020).    

 

2. Data and Methodology 

2-1. Data 

Our empirical analysis uses comprehensive air quality data collected from 1,600 

monitoring stations covering all the prefectural cities in China. We aggregate the station level 

data to the city level and further combine them with weather variables, including temperature, 

precipitation, and snow. The air quality data are collected from the Ministry of  Ecology and 

Environment, and the weather data are collected from the Global Historical Climatology 

Network of  the U.S. National Oceanic and Atmospheric Administration.  

We collect local governments’ lockdown policies city by city from news media and 

government announcements. Each lockdown was implemented by the city government and 

had to be approved by the provincial government. Because the disease prevalence varied 

greatly across different regions, the terms and requirements of  the lockdown also differed 

across provinces and cities. We define a city as locked down when all three of  the following 

preventive measures were enforced: 1) prohibition of  unnecessary commercial activities in 

people’s daily lives, 2) prohibition of  any types of  gathering by residents, 3) restrictions on 

private (vehicle) and public transportation. More details on these datasets are described in 

Appendix 1. 
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Figure 1 presents a map of  the location of  locked down cities.3 The map shows that, in 

most cities near Wuhan, the strict lockdown was enforced. However, there is a considerable 

variation in the lockdown status for cities that are far away from Wuhan. Following our 

definition, 95 out of  324 cities were locked down during our study period. The timing of  the 

lockdown is plotted in Appendix Figure A1. We see that most of  the lockdowns were 

enforced from January 23rd to February 11th.  

Merging these datasets, we obtain city-by-week panel data in 324 Chinese cities from the 

period of  January 1st to March 1st, which covers several weeks before and after the 

introduction of  city lockdowns. We report the summary statistics of  air pollution and 

weather variables during this period in Appendix Table A2. The average AQI is 74, with a 

standard deviation of  42. The PM2.5 concentration is 52 µg/m3, five times higher than the 

WHO standard (10 µg/m3 for annual mean, and 25 µg/m3 for a daily mean). Cities that were 

locked down were, on average, more polluted than the control cities before the lockdowns. 

This is likely because Wuhan and its neighboring cities are generally more polluted than cities 

that are far away. We also see a sharp decline in AQI after the lockdown. 

2-2. Empirical Strategy 

We use two sets of  DiD models to identify the impact of  counter-COVID-19 on air 

pollution. First, in our baseline regression, we estimate the relative change in air pollution 

levels between the treated and control cities using the following model:  

𝑌𝑖𝑡 = 1[𝑐𝑖𝑡𝑦 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛]𝑖𝑡 ∗ 𝛽 + 𝑋𝑖𝑡 ∗ 𝛼 + 𝜇𝑖 + 𝜋𝑡 + 𝜀𝑖𝑡 (1) 

where 𝑌𝑖𝑡  represents the level of  air pollution in city 𝑖  in month-by-week 𝑡 . 

1[𝑐𝑖𝑡𝑦 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛]𝑖𝑡 denotes whether a lockdown is enforced in city 𝑖 in month-by-week 

𝑡, and takes the value one if  the city is locked down and zero otherwise. 𝑋𝑖𝑡 are the control 

 
3 Appendix Table A1 lists the lockdown status of  all the Chinese prefectural cities. 



8 
 

variables, including temperature, temperature squared, precipitation, and snow depth. 𝜇𝑖 

indicate city-fixed effects and 𝜋𝑡 indicate month-by-week fixed effects. As both city and 

week fixed effects are included in the regression, the coefficient 𝛽 estimates the difference 

in air pollution between the treated (locked down) cities and the control cities before and 

after the enforcement of  the lockdown policy. We expect the coefficient 𝛽 to be negative, 

as the industrial and business activities were restricted in the locked down cities, and thus 

their air pollution levels should significantly decrease.  

The underlying assumption for the DiD estimator is that treated and control cities had 

parallel trends in the outcome before the lockdowns. To test this assumption, we conduct a 

parallel trend test following Jacobson et al. (1993):  

𝑌𝑖𝑡 = ∑ 1[𝑐𝑖𝑡𝑦 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛]𝑖𝑡,𝑘 ∗ 𝛽𝑘

𝑀

𝑚=𝑘,𝑚≠−1

+ 𝑋𝑖𝑡 ∗ 𝛼 + 𝜇𝑖 + 𝜋𝑡 + 𝜀𝑖𝑡 (2) 

where 1[𝑐𝑖𝑡𝑦 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛]𝑖,𝑡𝑘 are a set of  dummy variables indicating the treatment status 

at different periods. The dummy for 𝑚 = −1 is omitted in Equation (2) so that the post-

lockdown effects are relative to the period immediately before the launch of  the policy. The 

parameter of  interest 𝛽𝑘  estimates the effect of  city lockdown 𝑚  weeks after the 

implementation. We include leads of  the treatment dummy in the equation, testing whether 

the treatment affects the air pollution levels before the launch of  the policy. Intuitively, the 

coefficient 𝛽𝑘 measures the difference in air quality between cities under lockdown and 

otherwise in period 𝑘 relative to the difference one year before the lockdown. We expect 

lockdown would improve air quality with 𝛽𝑘 being negative when 𝑘 ≥ 0. If  the parallel 

trend assumption holds, 𝛽𝑘 would be close to zero when 𝑘 ≤ −2. 

Even in a city that did not have a formal lockdown policy, people’s daily lives could still 

be affected by the counter-virus measures. In fact, in all Chinese cities, the Spring Festival 
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holiday was extended, and people were advised to stay at home when possible, enforce social 

distancing, and keep good hygiene. We examine this possibility by comparing the air pollution 

changes between 2019 and 2020 for the same period (January 1st to March 1st) within the 

control group. As the explosion of  the COVID-19 cases coincided with China’s Spring 

Festival (SF), we investigate whether the trend of  air quality in 2020 differs from the trend 

in 2019 after the festival, by fitting the following model:  

𝑌𝑖𝑡𝑗 = 1[𝑆𝐹 ∗ 1(𝑦𝑒𝑎𝑟 ≥ 2020)]𝑖𝑡𝑗 ∗ 𝛽 + 𝑋𝑖𝑡𝑗 ∗ 𝛼 + 𝜇𝑖 + 𝜋𝑡 + 𝜀𝑖𝑡𝑗                  (3) 

where 𝑖  denotes city, 𝑡  is month-by-week, and 𝑗  represents year. 1[𝑆𝑃 ∗ 1(𝑦𝑒𝑎𝑟 ≥

2020)]𝑖𝑡𝑗 is our variable of  interest, and it takes the value one if  it is after the Chinese 

Spring Festival in the year 2020, and zero otherwise. The estimated coefficient 𝛽 would be 

zero if  the coronavirus and countermeasures do not affect control cities. As in Model (1), 

𝑋𝑖𝑡𝑗 are the control variables, 𝜇𝑖 are city fixed effects and 𝜋𝑡 indicates month-by-week 

fixed effects.  

The identifying assumption for Model (3) is similar to Model (1). We require the trends 

in air quality before the Spring Festival in 2019 to be similar to the trends in air quality in the 

corresponding period in 2020 (i.e., the parallel trend assumption). We can test this 

assumption analogously using Model (2). In all the regressions, we cluster the standard errors 

at the city level.  

 

3. Results 

3-1. Main Results 

We start by presenting the patterns in the raw air quality data. In Panel A of  Figure 2, we 

plot the AQI between the treatment and control cities over the study time in 2020 with a 

solid blue line representing the treatment group and a red dashed line representing the 
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control group. This figure shows the first margin: to what extent city lockdown affected air 

pollution between the treated and control cities. The figure shows the treatment group had 

worse air pollution levels (higher AQI) than the control group before the Chinese Spring 

Festival. However, the difference significantly decreased after more cities were locked down, 

suggesting that the lockdown improved air quality.  

In Panel B of  Figure 2, we look at the second margin: to what extent the control cities 

were also affected by the counter-virus measures. We see the AQI levels were almost 

equivalent before the Spring Festival in 2019 and 2020, implying the parallel trend assumption 

is likely to hold. In 2020, shortly after the festival, we observe that the air pollution levels 

became slightly lower, relative to the 2019 post-festival season. This result suggests that air 

quality in the control cities marginally improved, although they were not formally locked 

down.  

Table 1 summarizes the regression results from estimating Equations (1) and (3). 

Columns (1) to (4) show the results on the first margin from Equation (1): the effects of  the 

city lockdown on air quality. Here, we focus on AQI and PM2.5 concentrations, as these are 

designated as the primary targets in reducing air pollution.4 We find that the coefficient of  

lockdown is large and statistically significant at 1% in all the regressions. City lockdown 

decreased the AQI by 19.4 points (18%) and PM2.5 by 13.9 µg/m3 (17%) when including 

weather controls and a set of  fixed effects (in columns (2) and (4)). These estimates are 

remarkably robust to the inclusion of  weather variables, indicating that the changes in air 

pollution caused by city lockdown are not correlated with weather conditions.  

In Columns (5) to (8), we test the second margin: whether the air quality in the control 

cities was affected by the disease preventive measures (most of  such actions were 

 
4 The results for other pollutants are reported in Appendix Table A3. 
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implemented around the Spring Festival period) relative to 2019 air quality. We find that air 

quality also improved, but the effects are smaller than the first margin. The results show that 

AQI decreases by 8.8 points (7%) and PM2.5 by 8.4 (8%) after controlling for weather variables. 

Combining these two sets of  results, we estimate the total effects of  city lockdown on 

air quality relative to the identical season in the previous year. We find that lockdown 

improved air quality substantially: it reduced AQI and PM2.5 by around 25% in the locked 

down cities and 7~8% in the control cities. 

Figure 3 reports the parallel trend tests using the event-study approach.5 In Panel A, we 

estimate Equation (2) and plot the estimated coefficients and their 95% confidence intervals. 

We find that the estimated coefficients for the lead terms (𝑘 ≤ −2) are all statistically 

insignificant, implying that there is no systematic difference in the trends between treatment 

and control groups before the city lockdown. We also see that the trends break after the city 

lockdown, i.e., the lag terms (𝑘 ≥ 0) became negative and statistically significant. The AQI 

dropped by 20~30 points within two weeks after lockdown and this result remains 

statistically significant in subsequent periods. In Panel B, we test the parallel trend assumption 

for cities in the control group using data in 2019 and 2020. We find that their trends in air 

quality before the Chinese Spring Festival were also similar, suggesting that the air quality in 

2019 could be a reasonable counterfactual for air quality in 2020 in the controlled cities. The 

estimated coefficients after the festival show a meaningful reduction in air pollution, with the 

AQI being reduced by 5 to 10 points. Appendix Figure A2 repeats the same exercise using 

log AQI, PM2.5, and log PM2.5 as the outcomes, and we observe very similar patterns.  

In Appendix Table A6, we further check the robustness of  the results in several ways. In 

Panel A, we exclude cities in Hubei province, where the COVID-19 epidemic originated, and 

 
5 The corresponding regression results are reported in Appendix Table A4 and Table A5.  
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re-estimate Table 1. All the findings remain similar, suggesting that our main results are not 

driven by a few cities that were most affected by the virus. In Panel B, we repeat this exercise 

using daily-level data and again reach a similar conclusion.  

3-2. Heterogeneity 

In Figure 4, we investigate the heterogeneous impacts of  city lockdown. We plot the 

estimated coefficients and their 95% confident intervals from fitting Equation (1) using 

different subsamples. We use the mean values to separate the “high” group from the “low” 

group for each pair of  heterogeneity analyses. For example, if  a city's GDP is higher than 

the mean GDP, it falls into a “high” GDP group. 

We find that the effect of  lockdown varies significantly across different types of  cities. 

Panel A shows that the impact is much more significant in colder cities or northern cities. 

The estimated reduction in the AQI is around 20~30 points for those cities and is 0~10 

points in warmer or southern cities. The difference could be driven by the fact that colder 

cities consume more coal for heating, and lockdown reduces such consumption in offices, 

plants, and schools, which led to a greater improvement in air quality. In Panel B, we see the 

effect is greater in cities with larger GDP, population, and higher income (measured by per 

capita GDP). This is consistent with the fact that energy consumption is higher in more 

agglomerated economies, where a lot of  economic activities take place. Finally, Panels C and 

D show that, in the cities that rely more on industrial activities (measured by the 

manufacturing output, the volume of  traffic, the number of  firms, and the emissions of  

different types of  pollutants), the effect is more substantial. We repeat our heterogeneity 

analysis for PM2.5 and similarly illustrate the results in Appendix Figure A3. Appendix Table 

A7 presents the full set of  results on AQI and PM2.5. 

To summarize, the impact of  city lockdown on air quality was greater in colder, larger, 
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richer, and more industrialized cities. This finding implies that coal consumption, industrial 

activities, and transportation all contribute substantially to air pollution in China. 

 

4. Potential Benefits from Improved Air Quality 

A large strand of  literature has investigated how air pollution affects population health. 

Here, we provide some back-of-the-envelope calculations on the potential benefits of  the air 

quality improvement caused by China’s efforts to contain the virus, based on estimates in the 

existing literature.  

We borrow estimates from studies that meet the following two criteria. First, we focus 

on quasi-experimental studies that investigate how exogenous changes in air quality affect 

health outcomes. Because the air pollution variation could be confounded by factors that 

also affect population health, the estimates from these studies are generally recognized as 

being more credible than those based on associational models (e.g., Graff  Zivin and Neidell, 

2013; Dominici et al., 2014). Second, we focus on the most recent research in China. Because 

the effects of  air pollution on mortality could depend on the baseline pollution levels, income, 

and institutional quality, studies using data from earlier years may be less relevant to our 

research context (Arceo et al., 2014; Cheung et al., 2020). 

We search for the literature and identify two studies that meet both criteria: He et al. 

(2020) use seasonal agricultural straw burning as the instrumental variable for PM2.5, and 

estimate how PM2.5 affects mortality; and Fan et al. (2020) examine how turning on the coal-

fired winter heating system affects weekly mortality.6 These studies estimate that a 10 µg/m3 

 
6 A few other studies also use quasi-experimental approaches to estimate the impacts of  air pollution on 

mortality in China, including Chen et al. (2013), He et al. (2016), and Ebenstein et al. (2017). However, these 

studies are less relevant to our research context because they use data from at least a decade ago and focus on 

coarse measures of  air pollution, such as total suspended particles (TSP), or on PM10.  
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increase in PM2.5 would lead to a 2.2%~3.25% increase in mortality, which is largely 

consistent with a recent quasi-experimental study in the U.S. (Deryugina et al., 2020).7  

The results are summarized in Table 2. Recall that the counter-COVID-19 measures 

reduced PM2.5 in the control cities by 8.40 µg/m3, and the city lockdown further decreased 

PM2.5 in the treated cities by 13.9 µg/m3(total 22.3 µg/m3). Assuming these counter-virus 

measures last for 4 weeks/1 month on average (which is the case for most cities, except cities 

in Hubei), the total number of  averted premature deaths would be around 24,000 to 36,000. 

These numbers are significantly larger than the total number of  deaths caused by COVID-

19 in China (less than 3,300 as of  March 28, 2020) (WHO, 2020) and illustrate the enormous 

social costs associated with air pollution. 

 

5. Conclusion 

Using a timely and comprehensive dataset, we investigate the effect of  city lockdown on 

air quality in China, which could bring about massive social benefits and partially offset the 

costs of  the COVID-19 epidemic. We find that such drastic preventive measures have a 

significant impact on air quality. We estimated that air quality improved by around 25% (a 

28.2 point decline for AQI, and 22.3µg/m3 for PM2.5) relative to the same season in 2019. 

We also showed that, even in the control cities, where lockdown was not fully implemented, 

air quality improved (AQI decreased by 8.8 points (7%) and PM2.5 by 8.4 µg/m3 (8%)). These 

effects are much larger in more industrialized, richer, and colder cities. 

The remarkable improvement in air quality could lead to substantial health benefits. 

Based on the previous estimates on the relationship between air pollution and mortality, we 

 
7 We summarize the related studies in Appendix Table A8. We see that quasi-experimental studies find larger 

effects on mortality than associational studies.  
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show that averted premature deaths per month could be around 24,000 to 36,000, which is 

an order of  magnitude larger than the number of  deaths caused directly by COVID-19 in 

China (WHO, 2020). Because air pollution also has significant impacts on morbidity, 

productivity, and defensive (preventive) expenditures, our estimates should be interpreted as 

the lower bound of  the benefits that can be derived from air quality improvement.8 

We conclude by pointing out some caveats of  this study. First, we only consider the 

short-term effects of  city lockdown. First, as cities resume normal activities, the health 

benefits of  air quality improvement could be offset in the longer term. Second, we examine 

the effect of  city shutdown on outdoor air quality and do not account for indoor air quality. 

More people likely spent their time indoors during the lockdown. If  indoor air quality is 

worse than outdoor air quality (e.g., some areas rely heavily on inefficient coal-fired stoves 

for heating), the beneficial effects from better outdoor air quality could be reduced. Finally, 

our calculation of  the averted number of  deaths is not based on actual mortality data, which 

are not yet available. If  COVID-19 or city lockdown affects mortality through other channels, 

the overall mortality costs could be higher or lower, depending on how different channels 

are affected. For example, medical resources in many cities ran short immediately after the 

disease outbreak, thus patients could die because they were unable to receive timely and 

proper treatment (Xie et al., 2020). The counter-virus measures also negatively affected the 

economy and employment, which are detrimental to population health. In such cases, more 

excess deaths could be caused by economic consequences than were saved by reduced 

pollution. On the other hand, COVID-19 may have increased individuals’ awareness of  their 

health conditions and made people practice good hygiene. This could significantly reduce 

 
8 For example, the morbidity cost of  air pollution is found to be around two-thirds of  mortality costs in China 

(Barwick et al., 2018). 
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deaths from other diseases, particularly influenza.9 While estimating the overall mortality 

cost of  COVID-19 and city lockdown is beyond the scope of  our paper, future research on 

these issues is warranted to understand the full implications of  the COVID-19 pandemic.   

  

 
9 For example, in Hong Kong,  the number of  deaths caused by influenza and the number of  cases of  

influenza-like illness were reduced by more than 50%, as compared to previous years: 

https://www.ft.com/content/ad7ae6b4-5eab-11ea-b0ab-339c2307bcd4; in Japan, the influenza-like illness 

cases in the first week of  February were only about 30% compared to the same week a year ago: 

https://www.japantimes.co.jp/news/2020/02/21/national/influenza-wave-drastically-wanes-japan-amid-

spread-coronavirus/#.Xn9VHqgzaUl.  
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Figure 1. Map of  the Locked-down Cities 

 

Notes: This map shows which cities were locked down during the COVID-19 pandemic. 

The blue diamond represents locked-down cities. Overall, 95 out of  324 cities were locked 

down. The orange triangle indicates Wuhan city, where COVID-19 was first identified in 

China.  
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Figure 2. Trend of  Air Quality in Treatment and Control Group 

 

Panel A: Trend of  AQI in the Treatment and Control Group in 2020 

 

 

Panel B: Trend of  AQI in the Control Group in 2019 and 2020 

 

Notes: These figures show the trends in the Air Quality Index (AQI) in different groups of  

cities. In Panel A, we plot the AQI in the treatment and the control group in 2020. In Panel 

B, we plot the AQI in the control group in 2019 and 2020. The vertical dashed purple line 

represents the timing of  the Chinese Spring Festival. 
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Figure 3. The Effects of  Lockdown Before and After its Implementation 

 

Panel A: The Effects of  Lockdown on AQI 

 

Panel B: The Effects of  the Disease Preventive Measures  

on AQI in the Control Group (2019 and 2020) 

 

Notes: These figures summarize the results of  the parallel trend tests. We include leads and 

lags of  the start of  the city lockdown dummy in the regressions. The dummy variable 

indicating one week before the city lockdown is omitted from the regressions. The 

estimated coefficients and their 95% confidence intervals are plotted. In Panel A, we 

compare the air pollution levels between the treated cities with the control cities, and in 

Panel B, we compare air pollution levels in the control cities between 2019 and 2020.   
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Figure 4. Heterogeneous Effects of  Lockdown on the Air Quality Index 

 

Notes: The X-axis shows the estimated coefficients and their 95% confidence intervals. 

Each row corresponds to a separate regression using a corresponding subsample. We use 

the mean values to separate the “high” group from the “low” group for each pair of  

heterogeneity analyses. For example, if  a city's GDP is higher than the mean GDP, it falls 

into a “high” GDP group. For temperature (colder or warmer group), we use data 

measured in the first week of  our study period. North and South are divided along the 

Huai River. Other socio-economic data for the classification are measured in 2017. Each 

regression implements the equation and controls for weather, city fixed effects, and month-

by-week fixed effects. Standard errors are clustered at the city level. 
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Table 1. The Effects of Lockdown on Air Quality  
  Treatment and Control Group in 2020  Control Group in 2019 and 2020 
  Levels Log  Levels Log 

    (1) (2) (3) (4)   (5) (6) (7) (8) 

Panel A. Air Quality Index (AQI) 
 Lockdown -18.84*** -19.43*** -0.17*** -0.18***      

  (3.27) (3.04) (0.03) (0.03)      

 Spring Festival in 2020      -6.51** -8.77*** -0.04 -0.07*** 
       (2.53) (2.40) (0.03) (0.03)            

 R-Squared 0.695 0.723 0.769 0.793  0.647 0.655 0.701 0.711 

Panel B. PM2.5 (μg/m3) 
 Lockdown -13.47*** -13.94*** -0.15*** -0.17***      

  (2.65) (2.36) (0.03) (0.03)      

 Spring Festival in 2020      -7.58*** -8.40*** -0.06* -0.08** 
       (2.06) (2.07) (0.03) (0.03)            

 R-Squared 0.722 0.752 0.809 0.828  0.651 0.654 0.729 0.735            
 Weather Control  Y  Y   Y  Y 
 City FE Y Y Y Y  Y Y Y Y 
 Month-by-Week FE Y Y Y Y  Y Y Y Y 
 Obs. 2,916 2,916 2,916 2,916  4,158 4,158 4,158 4,158 

  No. of Cities 324 324 324 324   232 232 232 232 

Notes: Weather controls include weekly mean temperature, its square, weekly mean precipitation, and weekly mean snow depth. Standard errors are clustered at 

the city level and reported below the coefficients. * significant at 10% ** significant at 5%. *** significant at 1%. 
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Table 2. Estimated Health Benefits from Improved Air Quality 

 

 
 

Elasticity  

(PM2.5 per 

10 μg/m3) 

Actual 

Change in 

PM2.5 (per 

10 μg/m3) 

Population  

Affected 

(per 1,000) 

Base 

Monthly 

Mortality 

Rate  

(per 1000) 

Estimated  

Monthly 

Deaths 

  (1) (2) (3) (4) (5) 

 
      

Panel A. Elasticity from Fan et al. (2020) 

 Lockdown Cities 2.20% 2.234 545,820 0.59 15,939 

 Control Cities 2.20% 0.84 738,720 0.59 8,111 

     total 24,050 

Panel B. Elasticity from He et al. (2020) 

 Lockdown Cities 3.25% 2.234 545,820 0.59 23,546 

 Control Cities 3.25% 0.84 738,720 0.59 11,983 

     total 35,529 

Notes: We estimate the overall monthly number of  deaths in China by multiplying four variables 

represented in Columns (1) to (4). In Column (1), the elasticity indicates the extent to which a 10 μg/m3 

change in PM2.5 concentration affects the mortality rate. Column (2) summarizes estimated changes in 

PM2.5 in different types of  cities based on Table 1. In Column (4), we obtain China’s annual death rate 

from World Development Indicators and divide it by 12 to obtain the monthly death rate. As we do not 

have city-level mortality rate, in this calculation, we assume that the baseline mortality rate is the same 

across cities. 
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Online Appendix 

 

Appendix 1: Data Appendix 

Air Quality Data: The air quality data is a high-frequency dataset covering seven major sets 

of  air pollutants. We obtain these data from the Ministry of  Ecology and Environment. 

The original dataset includes hourly readings on Air Quality Index (AQI), PM2.5, PM10, 

SO2, O3, NO2, and CO from 1605 air quality monitoring stations covering all the 

prefectural cities in China. Based on weights of  the inverse of  squared distance from the 

station and city population center, we collapse the dataset to 324 cities at a weekly level. 

Weather Data: Weather data includes temperature, precipitation, and snow. These data are 

obtained from the Global Historical Climatology Network (GHCN) from the National 

Oceanic and Atmospheric Administration (NOAA). We collapse data to a weekly city-

level dataset using the same methods as the air quality data.  

Lockdown: We collect local governments’ lockdown information city by city from news media 

and government announcements. Most of  the cities’ lockdown policies were directly 

issued by the city-level governments, while a few were promulgated by the provincial 

governments. To improve policy compliance, civil servants and volunteers were assigned 

to communities, firms, business centers, and traffic checkpoints. The local government 

also penalized offenders if  the rules were violated. There are some variations in rules and 

degrees of  the lockdown. For example, in some cities, individuals were not allowed to go 

out (food and daily necessities were delivered to them), while in other cities, they could 

go out if  they did not have a fever. In this paper, we define lockdown when the following 
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three measures are all enforced: 1) prohibition of  unnecessary commercial activities for 

people’s daily lives, 2) prohibition of  any type of  gathering by residents, 3) restrictions 

on private (vehicles) and public transportation. The primary dataset for lockdown is at a 

daily level. Thus, we aggregate this to a weekly level. Here, we define treatment = 1 if  

more than half  of  the days in the week were locked down. The timings of  the cities’ 

lockdowns are presented in Appendix Table A1. 

Socio-Economic Status: To explore the heterogeneity, we assemble the cities’ socio-economic 

status from the 2017 China City Statistical Yearbook. It contains city-level statistics such 

as GDP, population, amount of  traffic, pollutant emissions, and industrial output.  

 

Appendix 2: Back-of-The-Envelope Calculations on Potential Health Benefits 

We predict the reduced mortality from the improvement in air quality by calculating the 

following equation:  

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑖𝑡 = ∆𝐴𝑄̂𝑖𝑡 ∗ 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 ∗ 𝐵𝑎𝑠𝑒 𝑀𝑅𝑖𝑡 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑡 (A1) 

where 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑖𝑡 represents estimated saved deaths in city 𝑖 in month 𝑡, and ∆𝐴𝑄̂𝑖𝑡 

indicates an estimated change in air quality from Equations (1) and (3) in city 𝑖 in month 𝑡, 

where we assume the effect of  lockdown on air quality is identical within the treatment group 

and within the control group. We borrow 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 from existing literature, measuring 

the effect of  air quality on mortality; this represents the change in number of  deaths in 

response to a one-unit change in air quality. 𝐵𝑎𝑠𝑒 𝑀𝑅𝑖𝑡 represents the base mortality rate, 

and 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑡  denotes the population in city 𝑖  in week 𝑡 . The computations are 

summarized in Table 7 in the main text. 
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Figure A1. Timing of  Lockdown 

 

Notes: This graph shows the timing of  the start of  the city lockdown. The x-axis 

represents the date, and the y-axis represents the number of  locked down cities. 

The yellow background represents the Chinese Spring Festival, and the red 

background represents the extended Spring Festival.  
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Figure A2. Event-Study Results on AQI and PM2.5 

 

Panel A. The Effects of  Lockdown on Air Quality 

   

Panel B. The Effects of  2020 Spring Festival on Air Quality in the Control Group 

   

Notes: These figures summarize the results of  the parallel trend tests. We include leads and lags of  the start of  the city lockdown dummy in the 

regressions. The dummy variable indicating one week before the city lockdown is omitted from the regressions. The estimated coefficients and their 

95% confidence intervals are plotted. In Panel A, we compare the air pollution levels between the treated cities and the control cities, and in Panel 

B, we compare air pollution levels in the control cities between 2019 and 2020.
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Figure A3. Heterogeneous Impact Using PM2.5 

 
Notes: The x-axis shows the estimated coefficients and their 95% confidence intervals. Each 

row corresponds to a separate regression using a corresponding subsample. We use the 

mean values to separate the “high” group from the “low” group for each pair of  

heterogeneity analyses. For example, if  a city’s GDP is higher than the mean GDP, it falls 

into the “high” GDP group. For temperature (colder or warmer group), we use data 

measured in the first week of  our study period. North and South are divided along the 

Huai River. Other socio-economic data for the classification are measured in 2017. 
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Table A1. List of Locked Down Cities 

Starting Date Cities 

23-Jan Wuhan 

24-Jan Huangshi, Shiyan, Yichang, Ezhou, Jingmen, Xiaogan, Huanggang, Xianning, 

Enshi 

25-Jan Qinhuangdao 

26-Jan Xiangyang, Jingzhou, Xiantao 

28-Jan Tangshan 

30-Jan Dongying 

31-Jan Chongqing, Yinchuan, Wuzhong 

2-Feb Wenzhou 

3-Feb Wuxi, Jining 

4-Feb Harbin, Nanjing, Xuzhou, Changzhou, Nantong, Hangzhou, Ningbo, Fuzhou, 

Jingdezhen, Zaozhuang, Linyi, Zhengzhou, Zhumadian 

5-Feb Shenyang, Dalian, Anshun, Fushun, Benxi, Dandong, Jinzhou, Fuxin, 

Liaoyang, Panjin, Tieling, Chaoyang, Huludao, Yangzhou, Hefei, Quanzhou, 

Nanchang, Jinan, Qingdao, Taian, Rizhao, Laiwu, Nanning 

6-Feb Tianjin, Shijiazhuang, Suzhou, Pingxiang, Jiujiang, Xinyu, Yingtan, Ganzhou, 

Ji’an, Yichun, Fuzhou, Shangrao, Neijiang, Yibin, Xinyang 

7-Feb Suzhou, Guangzhou 

8-Feb Shenzhen, Foshan, Fangchenggang, 

9-Feb Cangzhou, Huaibei 

10-Feb Beijing, Shanghai 

13-Feb Hohhot, Baotou, Wuhai, Chifeng, Tongliao, Ordos, Hulun Buir, Bayan Nur, 

Ulanqab, Xing’an League, Xilingol League, Alxa League 

Notes: The lockdown information is from local government and various media news in 2020. 
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Table A2. Summary Statistics 
 

  2020 (01. January ~ 01. March)  2019 (01. January ~ 01. March) 

   Treatment Group     

   (Locked Down Cities)     

  

All Cities 

Before 

Treatment 

After 

Treatment 

Control 

Group  

Treatment 

Group 

Control 

Group 

    (1) (2) (3) (4)   (5) (6) 

Panel A. Air Pollutant and Lockdown 
 Air Quality Index (AQI) 74.48 103.24 67.91 69.96  99.89 76.27 
  (42.41) (47.94) (26.75) (41.41)  (41.58) (38.35) 
 PM2.5 (μg/m3) 51.70 76.88 46.89 47.56  70.90 49.61 
  (33.94) (39.88) (20.84) (32.48)  (34.74) (31.37) 
 Lockdown 0.14 0.00 1.00 0.00  / / 

    (0.35) (0.00) (0.00) (0.00)   / / 

Panel B. Weather 
 Temperature (℃) 3.75 2.44 6.35 3.50  3.44 3.01 
  (8.20) (6.19) (5.40) (8.89)  (5.23) (7.52) 
 Precipitation (100mm) 24.00 19.62 18.68 25.96  39.65 47.10 
  (45.89) (26.85) (20.07) (52.13)  (27.28) 47.10 
 Snow Depth (100mm) 60.13 59.78 58.30 60.57  61.10 65.70 

    (26.40) (23.27) (14.05) (28.77)   (24.87) (32.20) 

Notes: Each column summarizes the mean values and standard deviations of each variable at a weekly level. More information about the dataset is described in Appendix 

1. 
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Table A3. Main Specification Using Other Air Pollutants 
  Treatment and Control Cities in 2020 
  CO NO2 PM10 SO2 O3 
  (mg/m3) (μg/m3) (μg/m3) (μg/m3) (μg/m3) 
  (1) (2) (3) (4) (5) 

Panel A. Levels 
 Lockdown -0.07*** -4.70*** -22.22*** -1.25** 3.10*** 
  (0.03) (0.63) (3.18) (0.49) (0.76) 
       

 R-Squared 0.788 0.870 0.688 0.857 0.770 
        

Panel B. log 
 Lockdown -0.03*** -0.13*** -0.22*** -0.09*** 0.09*** 
  (0.01) (0.02) (0.03) (0.02) (0.02) 
       

 R-Squared 0.814 0.907 0.811 0.907 0.753 
       

 Weather Control Y Y Y Y Y 
 City FE Y Y Y Y Y 
 Date FE Y Y Y Y Y 
 Obs. 2,916 2,916 2,916 2,916 2,916 

  No. of Cities 324 324 324 324 324 

Notes: Weather controls include weekly mean temperature, its square, weekly mean precipitation, and 

weekly mean snow depth. Standard errors are clustered at the city level and reported below the coefficients. 

* significant at 10% ** significant at 5%. *** significant at 1%. 
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Table A4. Event Study: The Effects of Lockdown on Air Quality 
 AQI  PM2.5 (μg/m3) 
 levels log  levels log 

  (1) (2)   (3) (4) 

>=4 Weeks Before -1.97 -0.03  -3.62 -0.06 
 (3.92) (0.04)  (3.35) (0.04) 

3 Weeks Before 5.48 0.02  2.54 0.01 
 (4.43) (0.04)  (3.89) (0.04) 

2 Weeks Before -1.97 -0.06  -2.41 -0.07 
 (4.77) (0.05)  (4.23) (0.05) 

Treatment Week -7.65** -0.08**  -8.10*** -0.11** 
 (3.65) (0.04)  (2.95) (0.05) 

1 Week Later -23.45*** -0.26***  -16.94*** -0.25*** 
 (4.24) (0.05)  (3.43) (0.05) 

2 Weeks Later -27.93*** -0.28***  -20.01*** -0.26*** 
 (4.97) (0.05)  (4.02) (0.05) 

3 Weeks Later -22.65*** -0.22***  -19.13*** -0.23*** 
 (4.75) (0.05)  (3.97) (0.05) 

>=4 Weeks Later -31.09*** -0.25***  -24.70*** -0.23*** 
 (5.09) (0.05)  (4.45) (0.06) 
      

Weather Y Y  Y Y 

City FE Y Y  Y Y 

Month-by-Week FE Y Y  Y Y 

Obs. 2,916 2,916  2,916 2,916 

R-Squared 0.719 0.795  0.740 0.822 

No. of Cities 324 324   324 324 

Notes: Weather controls include weekly mean temperature, its square, weekly mean precipitation, and weekly 

mean snow depth. Standard errors are clustered at the city level and reported below the coefficients. * 

significant at 10% ** significant at 5%. *** significant at 1% 
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Table A5. Event Study: The 2020 Spring Festival 

on Air Quality in The Control Group 
 AQI  PM2.5 (μg/m3) 
 levels log  levels log 

  (1) (2)   (3) (4) 

>=4 Weeks Before 0.65 0.02  0.73 0.02 
 (1.95) (0.02)  (1.48) (0.02) 

3 Weeks Before 2.46* 0.04**  2.64** 0.05** 
 (1.48) (0.02)  (1.19) (0.02) 

2 Weeks Before 0.31 -0.00  0.67 0.00 
 (1.51) (0.02)  (1.14) (0.02) 

Treatment Week -6.21** -0.06**  -6.32** -0.07** 
 (2.94) (0.03)  (2.55) (0.03) 

1 Week Later -8.18*** -0.07***  -7.70*** -0.10*** 
 (2.67) (0.03)  (2.21) (0.03) 

2 Weeks Later -8.65*** -0.08***  -8.10*** -0.09*** 
 (2.78) (0.03)  (2.44) (0.03) 

3 Weeks Later -5.70* -0.05  -5.87** -0.06* 
 (2.96) (0.03)  (2.47) (0.03) 

>=4 Weeks Later -7.96*** -0.07***  -6.19** -0.08*** 
 (3.01) (0.03)  (2.42) (0.03) 
      

Weather Y Y  Y Y 

City FE Y Y  Y Y 

Month-by-Week FE Y Y  Y Y 

Obs. 4,158 4,158  4,158 4,158 

R-Squared 0.653 0.712  0.652 0.735 

No. of Cities 232 232   232 232 

Notes: Weather controls include weekly mean temperature, its square, weekly mean precipitation, and weekly 

mean snow depth. Standard errors are clustered at the city level and reported below the coefficients. * 

significant at 10% ** significant at 5%. *** significant at 1% 
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Table A6. Robustness Check Using Different Samples 

    AQI log (AQI)   PM2.5 log (PM2.5) 

    (1) (2)   (3) (4) 

Panel A. Drop Cities in Hubei Province 
 Lockdown -21.69*** -0.20***  -15.83*** -0.19*** 
  (3.3) (0.03)  (2.56) (0.03) 
       

 R-Squared 0.725 0.796  0.754 0.831 
 Obs. 2808 2808  2808 2808 
 Month-by-Week FE Y Y  Y Y 

              

Panel B. Using Daily Data 
 Lockdown -19.84*** -0.17***  -14.07*** -0.17*** 
  (3.13) (0.03)  (2.53) (0.03) 
       

 R-Squared 0.515 0.601  0.541 0.641 
 Obs. 19764 19764  19764 19764 
 Date FE Y Y  Y Y 
       

 Weather Control Y Y  Y Y 
 City FE Y Y  Y Y 
 No. of Cities 324 324   324 324 

Notes: Weather controls include mean temperature, its square, precipitation, and snow depth. Standard errors 

are clustered at the city level and reported below the coefficients. * significant at 10% ** significant at 5%. 

*** significant at 1%. 
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Table A7. Heterogeneity Analysis 

  AQI  PM2.5 (μg/m3) 
  levels log  levels log 
  (1) (2)  (3) (4) 

Panel A  
 Cold Region -26.97*** -0.20***  -16.17*** -0.12*** 
  (5.77) (0.05)  (3.90) (0.04) 
 Warm Region -8.58*** -0.12***  -6.78*** -0.14*** 
  (2.83) (0.03)  (2.29) (0.04) 
 Northern China -25.71*** -0.20***  -16.11*** -0.13*** 
  (5.23) (0.04)  (3.57) (0.04) 
 Southern China -5.75** -0.10***  -4.34** -0.11*** 
   (2.50) (0.03)   (1.97) (0.04) 

Panel B 
 GDP (high) -22.70*** -0.22***  -13.98*** -0.19*** 
  (5.19) (0.05)  (3.66) (0.05) 
 GDP (low) -17.79*** -0.16***  -14.44*** -0.16*** 
  (3.85) (0.03)  (3.15) (0.04) 
 per capita GDP (high) -21.61*** -0.21***  -13.95*** -0.18*** 
  (4.29) (0.04)  (3.16) (0.05) 
 per capita GDP (low) -17.65*** -0.16***  -14.32*** -0.16*** 
  (4.23) (0.04)  (3.44) (0.04) 
 Population (high) -21.69*** -0.22***  -14.79*** -0.21*** 
  (4.71) (0.04)  (3.46) (0.05) 
 Population (low) -16.21*** -0.14***  -12.63*** -0.12*** 
   (3.94) (0.04)   (3.23) (0.04) 
 Weather Y Y  Y Y 
 City FE Y Y  Y Y 
 Month-by-Week FE Y Y  Y Y 

Notes: Each cell represents a separate regression using the corresponding subsample. For example, a 

warm region uses cities whose temperature is above the mean. Weather controls include weekly mean 

temperature, its square, weekly mean precipitation, and weekly mean snow depth. Standard errors are 

clustered at the city level and reported below the coefficients. * significant at 10% ** significant at 5%. 

*** significant at 1% 
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Table A7 (Cont.). Heterogeneity Analysis 

  AQI  PM2.5 (μg/m3) 
  levels log  levels log 
  (1) (2)  (3) (4) 

Panel C  
 Secondary Industry Output (high) -30.35*** -0.27***  -20.18*** -0.24*** 
  (5.02) (0.04)  (3.48) (0.05) 
 Secondary Industry Output (low) -11.77*** -0.12***  -9.46*** -0.12*** 
  (3.77) (0.04)  (3.08) (0.04) 
 No. of Firms (high) -24.74*** -0.23***  -16.21*** -0.20*** 
  (4.91) (0.04)  (3.36) (0.04) 
 No. of Firms (low) -13.71*** -0.12***  -11.05*** -0.12*** 
  (4.02) (0.04)  (3.38) (0.04) 
 Transportation Activity (high) -22.90*** -0.24***  -14.26*** -0.22*** 
  (5.19) (0.05)  (3.77) (0.05) 
 Transportation Activity (low) -17.17*** -0.15***  -13.76*** -0.14*** 
  (3.54) (0.03)  (2.90) (0.03) 

Panel D 
 Wastewater Emission (high) -21.88*** -0.24***  -13.89*** -0.21*** 
  (4.62) (0.04)  (3.29) (0.05) 
 Wastewater Emission (low) -17.91*** -0.14***  -14.41*** -0.14*** 
  (4.00) (0.04)  (3.31) (0.04) 
 SO2 Emission (high) -25.52*** -0.25***  -16.99*** -0.22*** 
  (5.11) (0.05)  (3.75) (0.05) 
 SO2 Emission (low) -15.07*** -0.13***  -12.21*** -0.13*** 
  (3.65) (0.03)  (3.00) (0.04) 
 Dust Emission (high) -24.75*** -0.25***  -16.61*** -0.22*** 
  (4.48) (0.04)  (3.26) (0.04) 
 Dust Emission (low) -14.49*** -0.12***  -11.60*** -0.12*** 
  (4.26) (0.04)  (3.54) (0.04) 
 Weather Y Y  Y Y 
 City FE Y Y  Y Y 
 Month-by-Week FE Y Y  Y Y 

Notes: Each cell represents a separate regression using the corresponding subsample. For example, a 

warm region uses cities whose temperature is above the mean. Weather controls include weekly mean 

temperature, its square, weekly mean precipitation, and weekly mean snow depth. Standard errors are 

clustered at the city level and reported below the coefficients. * significant at 10% ** significant at 5%. 

*** significant at 1% 
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Table A8. Summary of  Related Literature on the Health Impacts of  Air Pollution  

  Study Country Period Method Effects 

Panel A. Quasi-Experiment Study 

 Fan et al. (2020) China 
2014~ 

2015 

Regression 

Discontinuity 

A 10 μg/m3 increment in PM2.5 is associated with a 2.2% increase in mortality 

rate per 100,000 using the timing of the start of winter heating. 

 He et al. (2020) China 
2013~ 

2015 

Instrumental  

Variable 

A 10 μg/m3 increment in PM2.5 is associated with a 3.25% increase in 

mortality rate per 100,000 using the air pollution from agricultural fire. 

 Deryugina et al. (2020) USA 
1999~ 

2013 

Instrumental  

Variable 

A 10 μg/m3 increment in PM2.5 is associated with a 1.8% increase in three-

day mortality rate per million people aged 65+ using the wind speed. 

Panel B. Associational Study 

 Shang et al. (2013) China 
2004~ 

2008 
Meta-Analysis 

A 10-μg/m3 increase in PM2.5 concentrations is associated with a 0.38% 

increase in total mortality. 

 Zhou et al. (2015) China 2013 
Multi-City  

Time-Series 

A 10-μg/m3 increase in two-day average PM2.5 concentrations is associated 

with a 0.6-0.9% increase in all-cause mortality in rural China. 

 Franklin et al. (2008) USA 
2000~ 

2005 

Hierarchical  

Model 

A 1.21% increase in all-cause mortality is associated with a 10-μg/m3 increase 

in the previous day's PM2.5 concentrations.  

 Kloog et al. (2013) USA 
2000~ 

2008 
Time-Series 

For every 10-μg/m3 increase in PM2.5 exposure, PM-related mortality 

increases by 2.8%. 

  Atkinson et al. (2014) World - Meta-Analysis 
A 10-μg/m3 increment in PM2.5 is associated with a 1.04% increase in the risk 

of death. The substantial regional variation is observed around the globe. 

 

 


