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Abstract. We study the implications of automation for labor market fluctuations in a

DMP framework, generalized to incorporate automation decisions. If a job opening is not

filled with a worker, a firm can choose to automate that position and use a robot instead of a

worker to produce output. The threat of automation strengthens the firm’s bargaining power

against job seekers in wage negotiations, depressing equilibrium real wages in a business cycle

boom. The option of automation also increases the value of a vacancy, raising the incentive

for job creation, and thereby amplifying fluctuations in vacancies and unemployment relative

to the standard DMP framework. Since automation improves labor productivity while

muting wage increases, it implies a counter-cyclical labor income share, as observed in the

data.

I. Introduction

Recent development in robotics and artificial intelligence have renewed concerns that

robots could render workers redundant, possibly leading to what Keynes (1930) called “tech-

nological unemployment.” The decline in the labor income share since the turn of the century

and stagnant wage growth during the recovery from the Great Recession have also heightened

fears that automation, by substituting robots for workers, is weakening workers’ bargaining

power. However, the notion of “machines replacing workers” is an over-simplification of the

macroeconomic impact of automation (Autor, 2015). While robots have been increasingly

adopted to perform standardized tasks previously performed by workers, new tasks for which

workers have a comparative advantage are also being created.(Acemoglu and Restrepo, 2018).

As a result of these different channels, the impact of automation on employment, wages, and

the labor share is a priori ambiguous.
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In this paper, we examine the interactions between automation and the labor market by

developing a general equilibrium framework with a frictional labor market and the option

to automate jobs. We focus on the implications of automation for labor market fluctuations

over the business cycles. In particular, we examine the mechanism through which automa-

tion drives changes in unemployment, real wages, and labor productivity. We assess the

quantitative importance of the automation mechanism by estimating the model to fit quar-

terly U.S. time series and compare the labor market implications of the estimated model

with those of a counterfactual version with no changes in automation decisions.

Our model builds on the standard Diamond-Mortensen-Pissarides (DMP) labor-search

model and generalizes it to incorporate automation decisions. The model has two key fea-

tures. First, firms create vacancies at a fixed cost. A vacancy is created if the realized i.i.d.

draw of the vacancy creation cost is below the value of the vacancy. Thus, unlike the stan-

dard DMP model, entry is costly in our model and a vacancy carries a positive value (Leduc

and Liu, 2019). This positive value is a necessary condition for automation to impact work-

ers’ effective bargaining power. In addition. costly vacancy creation induces more persistent

movements in vacancies and thus better align the model with the empirical evidence.

Second, we incorporate endogenous automation decisions. To keep the model tractable,

we assume that automation applies to a job position. We interpret a job position broadly

as consisting of a bundle of tasks, which are ex ante identical, but a fraction of which will

be automated depending on the realization of the idiosyncratic costs for automation. This

approach simplifies our analysis significantly.1 After posting a vacancy, a firm can fill the

position with a worker and obtain the employment value. If the position is not filled, the

firm draws an i.i.d. cost of automation. If the realized automation cost is below the expected

benefit of automation, then the position is automated, in which case the firm uses a robot

instead of a worker to produce output. If the unfilled position is not automated because of

high cost draws, the firm keeps the position open and receives the continuation value of the

vacancy, including the option to automate the position in future periods.

In the aggregate economy, newly hired workers add to the employment pool, and a fraction

of the employment stock is separated in each period. Similarly, newly adopted robots add to

the automation stock, which becomes obsolete over time at a constant rate. For simplicity,

we assume that goods produced by workers and by robots are perfect substitutes. Thus,

aggregate output is just the sum of the outputs produced by the two types of technologies.

1Acemoglu and Restrepo (2018) use an alternative framework to study automation. Building on the

earlier work of Zeira (1998), they consider a job consisting of a continuum of tasks, a fraction of which are

technologically automatable, while the other tasks need to be performed by human workers (see also Autor

and Salomons (2018)).
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Our model yields a few theoretical insights.

First, automation has a direct job-displacing effects since goods produced by robots are

perfect substitutes for goods produced by workers. But automation has also a job-creation

effect: the option of automating an unfilled job vacancy boosts the present value of a vacancy,

raising the incentive for job creation. The net effect of automation on employment can

be ambiguous, depending on the relative strength of the two opposing effects. Under our

estimated parameters, automation amplifies unemployment fluctuations.

Second, the threat of automation dampens wage increases in a business cycle boom. Since

the net value of automation is procyclical, the probability of automation increases in good

economic times, raising the firm’s reservation value (i.e., the value of a vacancy) in wage

bargaining, and therefore muting wage increases.

Third, increased automation in a boom raises aggregate productivity, further fueling the

expansion. By dampening wage increases while boosting labor productivity, automation

contributes to a decline in the labor income share in a business cycle expansion.

We further show that, in a counterfactual model without automation, exogenously re-

ducing workers’ bargaining weight can also amplify unemployment fluctuations and dampen

wage adjustments, similar to the automation channel in our framework. However, the re-

sponses of the labor share differ qualitatively. For instance, in response to a positive demand

shock, our model predicts a decline in the real wage, an increase in labor productivity, and

thus a decline in the labor share. The counterfacutal model without automation and with

a low workers’ bargainbing weight predicts a small increase in the real wage, no change

in labor productivity, and thus an increase in the labor share. This difference reflects the

threat of automation on wage bargaining and the endogenous productivity enhancement

from automation.

To assess the quantitative importance of our mechanism, we estimate the model to fit

quarterly U.S. time series data. These time series include unemployment, vacancies, real

wage growth, and non-farm business sector labor productivity growth, with a sample ranging

from 1964:Q2 to 2018:Q4. To fit these four time series, we assume four shocks in our model,

including a discount factor shock, a neutral technology shock, an automation-specific shock,

and a job separation shock. We find that matching the movements in labor productivity

is an important disciplining device on our endogenous automation mechanism, given the

important decline in productivity growth since the mid-2000s. In addition, note that since

we fit the growth in real wages and productivity, we necessarily fit the growth in the labor

share by construction over the estimation period.

We find that the option to automate plays an important role behind the decline in the

labor share, particularly during the recovery from the Great Recession. In a counterfactual
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exercise that keeps the probability of automation constant to its steady state value, and

that thus abstracts from endogenous responses in automation, our model predicts a roughly

constant labor share in contrast to its sharp decline following the Great Recession. Absent

automation and its threat, wages would have been higher during this period as well, while

productivity would have been even more muted. Automation’s negative impact on the labor

share is in line with the evidence in Autor and Salomons (2018). Using data on 28 industries

across 18 OECD countries between 1970 and 2007, they find that while automation increases

total hours worked it nonetheless lowers the labor share. As in our model, this reflects an

increase in output that more than offset the rise in labor income. Moreover, as in our

findings, the negative effect on the labor share has been growing over time and was more

pronounced since 2000.2

Finally, our model has important implications for the volatility of the vacancy-unemployment

ratio relative to the volatility of real wages, a statistical moment that has received a lot of

attention in the literature. In our framework, the threat of automation endogeneously damp-

ens wage fluctuations relative to unemployment and vacancies, implicitly working as a form

of real wage rigidity. This mechanism is quantitatively important. In our estimated model,

the volatility of the vacancy-unemployment ratio (i.e., the v-u ratio), which is a measure of

labor market tightness, is about 40 times that of the real wage rate, much larger than that

obtained from a counterfactual model with no endogenous fluctuations in automation (with

a volatility ratio of about 9). The procyclical threat of automation dampens wage increases.

At the same time, the increased adoption of robots raises aggregate productivity. Through

these channels, our model is able to generate a large volatility of the labor market tightness

relative to that of the real wage rate.

Our macro approach on the role automation complements recent analyses using disag-

gregated data. For instance, Arnoud (2018) examines the threat of automation on wages

using data from the U.S. Current Population Survey in 2013 and an index of automatability

developed in the literature (Frey and Osborne, 2017). Looking at wages by occupations and

individual characteristics, he finds a negative effect. Our model’s prediction that the threat

of automation mutes wages is consistent with this micro-level evidence.

Dinlersoz and Wolf (2018) use data from three U.S. Census Bureau’s Survey of Manu-

facturing Technology conducted in the late 1980s and early 1990s. One appealing feature

of these surveys for studying automation is that they were specifically designed to look at

technologies that facilitated the substitution of capital for labor. In line with our findings,

2Because their sample ends in 2007, Author and Salomons are silent on the impact of automation on the

labor share following the Great Recession.
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these authors document that firms that made greater use of automation displayed higher

productivity and had a lower labor share.

The impact of a greater use of robots in production has also been examined by Acemoglu

and Restrepo (2017), using U.S. county-level employment data on robots adoption, finding a

negative impact on employment and wages. Using a panel of industries in 17 countries from

1993 to 2007, Graetz and Michaels (2018) estimate that increases in the use of robots boosts

labor productivity growth and wages, with little effect on aggregate employment (though it

tends to reduce employment of low-skilled workers).

The empirical literature using disaggregated data is well suited to look at the impact

of automation on different types of industries, jobs, and tasks. However, one drawback is

the difficulty to aggregate this micro evidence into a macroeconomic impact. Our DSGE

model instead embeds all the general equilibrium effects, but does not directly speak to

heterogeneous effects across different types of jobs or sectors.

Karabarbounis and Neiman (2013) document a general decline in the labor share across

59 countries between 1975 and 2012. They introduce a macro model in which a secular fall

in the relative price of investment give firms an incentive to substitute capital for labor. In

their benchmark calibration, which includes an elasticity of substitution between capital and

labor greater than one, they find that automation accounts for roughly half of the decline

in the labor share in their sample. Our approach complements this work by focusing on

the relation between automation and wage bargaining and by focusing on business cycle

fluctuations.

There are other factors that may have contributed to the decline in the labor share since

the early 2000s. In addition to automation, Elsby et al. (2013) also empirically examine the

role of offshoring and find that industries facing greater import competition, particularly from

China, experienced a larger decline in the labor share. Autor et al. (2019) use micro, firm-

level, data form U.S. censuses since 1982 to calculate industry concentration and examine the

role of the rise in superstar firms for the decline in the labor share. They finding a larger fall

in the labor share in industries that experienced greater concentration over time. Relatedly,

Krueger (2018) emphasizes the growing importance of firms’ monopsony power in the labor

market (in the forms of implicit collusions, non-compete restrictions in labor contracts, and

outsourcing) as a factor that diminishes workers’ bargaining power. Our model highlights a

different mechanism: even if the worker’s bargaining weight is held constant, a higher threat

of automation can reduce wages because it raises the firms’ reservation value. Thus, our

work emphasizes the importance of regarding automation and bargaining power as being

jointly determined.
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The reminder of the paper is organized as follows. We first introduce the model in the

next section and then present our empirical strategy. We next discuss the business cycle

contributions of the different shocks in our model before examining the economy’s responses

to these shocks and the role that automation plays in the transmission. Using outputs from

our estimation strategy, we quantify the effect of the threat of automation on the labor share,

wages, and productivity. The last section concludes.

II. The model with labor market frictions and automation

This section presents a DSGE model that generalizes the standard DMP model to incor-

porate endogenous decisions of automation.

To keep automation decisions tractable, we impose some assumptions on the timing of

events. In the beginning of period t, a job separation shock δt realizes. Workers who lose

their jobs adds to the stock of unemployment from the previous period, forming the pool

of job seekers ut. Firms post vacancies vt at a fixed cost κ. The stock of vacancies vt

includes the unfilled vacancies that were not automated at the end of period t− 1, the jobs

separated in the beginning of period t, and new vacancies created in the beginning of period

t. Creating a new vacancy incurs a fixed cost, which is drawn from an i.i.d. distribution

G(·) as in Leduc and Liu (2019). In the labor market, a matching technology transforms job

seekers and vacancies into an employment relation, with a wage rate determined through

Nash bargaining between the employer and the job seeker. Once an employment relation

is formed, production takes place, and the firm receives the employment value. An unfilled

vacancy can be either carried forward to the next period or automated at a fixed cost. Similar

to the vacancy creation cost, the automation cost x is drawn from an i.i.d. distribution F (x).

If a firm draws an automation cost that is below a threshold value x∗t , then the firm adopts

a robot and closes the job opening. In that case, the firm obtains the automation value.

Otherwise, the vacancy remains open and the firm receives the continuation value of the

vacancy. Newly adopted robots add to the stock of automation, which becomes obsolete

over time at a constant rate ρo. Final goods output is the sum of the goods produced by

workers and by robots. The final good is used for household consumption and also for paying

the costs of vacancy posting, new vacancy creation, and robot adoption.

II.1. The Labor Market. In the beginning of period t, there are Nt−1 existing job matches.

A job separation shock displaces a fraction δt of those matches, so that the measure of

unemployed job seekers is given by

ut = 1− (1− δt)Nt−1, (1)
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where we have assumed full labor force participation and normalized the size of the labor

force to one.

The job separation rate shock δt follows the stationary stochastic process

ln δt = (1− ρδ) ln δ̄ + ρδ ln δt−1 + εδt, (2)

where ρδ is the persistence parameter and the term εδt is an i.i.d. normal process with a

mean of zero and a standard deviation of σδ. The term δ̄ denotes the steady-state rate of

job separation.

The stock of vacancies vt in the beginning of period t consists of the vacancies in period

t− 1 that were not filled with workers and not automated, plus the displaced job positions

and newly created vacancies. The law of motion for vacancies is given by

vt = (1− qvt−1)(1− qat−1))vt−1 + δtNt−1 + ηt, (3)

where qvt−1 denotes the job filling rate in period t − 1, qat−1 denotes the automation rate in

period t− 1, and ηt denotes the newly created vacancies (i.e., entry).

In the labor markert, new job matches are formed between job seekers and open vacancies

based on the matching function

mt = µuαt v
1−α
t , (4)

where mt denotes the number of job matches (or hiring) and α ∈ (0, 1) is the elasticity of

job matches with respect to the number of job seekers.

The flow of new job matches adds to the employment pool and job separations subtract

from it. Aggregate employment evolves according to the law of motion

Nt = (1− δt)Nt−1 +mt. (5)

At the end of period t, the searching workers who failed to find a job match remain

unemployed. Thus, unemployment is given by

Ut = ut −mt = 1−Nt. (6)

For convenience, we define the job finding probability qut as

qut =
mt

ut
. (7)

Similar, we define the job filling probability qvt as

qvt =
mt

vt
. (8)
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II.2. The firms. If a firm successfully hires a worker, then it can produce Zt units of

intermediate goods. The technology shock Zt follows the stochastic process

lnZt = (1− ρz) ln Z̄ + ρz lnZt−1 + εzt. (9)

The parameter ρz ∈ (−1, 1) measures the persistence of the technology shock. The term εzt

is an i.i.d. normal process with a zero mean and a finite variance of σ2
z . The term Z̄ is the

steady-state level of the technology shock.3

The value of employment satisfies the Bellman equation

Jet = Zt − wt + EtDt,t+1

{
(1− δt+1)Jet+1 + δt+1J

v
t+1

}
, (10)

where Dt,t+1 is a stochastic discount factor of the households. Hiring a worker generates a

flow profit Zt − wt in the current period. If the job is separated in the next period (with

probability δt+1), then the firm receives the vacancy value Jvt+1. Otherwise, the firm receives

the continuation value of employment.

Following Leduc and Liu (2019), we assume that creating a new vacancy incurs an entry

cost e in units of consumption goods. The entry cost is drawn from an i.i.d. distribution

F (e). A new vacancy is created if and only if the net value of entry is non-negative. The

benefit of creating a new vacancy is the vacancy value Jvt . Thus, the number of new vacancies

ηt is given by the cumulative density of the entry costs evaluated at Jvt . That is,

ηt = F (Jvt ). (11)

Posting a vacancy incurs a per-period fixed cost κ (in units of final consumption goods).

If the vacancy is filled (with probability qvt ), the firm obtains the employment value Jet . If

the vacancy is not filled, then the firm can choose to automate the position and close the

vacancy (with probability qat ), in which case the firm obtains the automation value Jat . If

the firm does not automate the unfilled position, then it receives the continuation value of

the vacancy. Thus, the vacancy value satisfies the Bellman equation

Jvt = −κ+ qvt J
e
t + (1− qvt )qat Jat + (1− qvt )(1− qat )EtDt,t+1J

v
t+1. (12)

The flow of automated job positions adds to the stock of automation, which becomes

obsolete at the rate ρo ∈ [0, 1] in each period. Thus, the automation stock At evolves

according to the law of motion

At = (1− ρo)At−1 + qat (1− qvt )vt, (13)

where qat (1−qvt )vt is the number of unfilled job positions that are newly automated in period

t.

3The model can easily be extended to allow for trend growth. We do not present that version of the

model to simplify presentation.
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Once adopted, a robot produced Ztζt units of output, where ζt denotes an equipment-

specific technology shock, which follows a stochastic process that is independent of the

neutral technology shock Zt. In particular, ζt follows the stationary process

ln ζt = (1− ρζ) ln ζ̄ + ρζ ln ζt−1 + εζt. (14)

The parameter ρζ ∈ (−1, 1) measures the persistence of the automation-specific technology

shock. The term εζt is an i.i.d. normal process with a zero mean and a finite variance of σ2
ζ .

The term ζ̄ is the steady-state level of the automation-specific technology shock.

Operating the robot incurs a flow fixed cost of κa. The value of automation satisfies the

Bellman equation

Jat = Ztζt − κa + (1− ρo)EtDt,t+1J
a
t+1, (15)

where the term κa captures the costs of energy, facilities, and space for automated production.

Automating a vacancy requires a fixed cost x in units of consumption goods. The fixed

cost is drawn from the i.i.d. distribution G(x). A firm chooses to adopt a robot if and only

if the cost of automation is less than the benefit. For any given benefit of automation, there

exists a threshold value x∗t in the support of the distribution G(x), such that automation

occurs if and only if x ≤ x∗t . The threshold value x∗t depends on the value of automation Jat

relative to the continuation value of a vacancy. In particular, the threshold for automation

decision is given by

x∗t = Jat − EtDt,t+1J
v
t+1. (16)

Thus, the probability of automation is the cumulative density of the automation costs eval-

uated at x∗t . More formally, the automation probability is determined by

qat = G(x∗t ). (17)

II.3. The representative household. The representative household has the utility func-

tion

E
∞∑
t=0

βtΘt (lnCt − χNt) , (18)

where E [·] is an expectation operator, Ct denotes consumption, and Nt denotes the fraction

of household members who are employed. The parameter β ∈ (0, 1) denotes the subjective

discount factor, and the term Θt denotes an exogenous shifter to the subjective discount

factor.

The discount factor shock θt ≡ Θt
Θt−1

follows the stationary stochastic process

ln θt = ρθ ln θt−1 + εθt. (19)
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In this shock process, ρθ is the persistence parameter and the term εθt is an i.i.d. normal

process with a mean of zero and a standard deviation of σθ. Here, we have implicitly assumed

that the mean value of θ is one.

The representative household chooses consumption Ct and savings Bt to maximize the

utility function in (18) subject to the sequence of budget constraints

Ct +
Bt

rt
= Bt−1 + wtNt + φ(1−Nt) + dt − Tt, ∀t ≥ 0, (20)

where rt denotes the gross real interest rate, wt denotes the real wage rate, dt denotes the

household’s share of firm profits, and Tt denotes lump-sum taxes. The parameter φ measures

the flow benefits of unemployment.

Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max lnCt − χNt + βEtθt+1Vt+1(Bt, Nt), (21)

subject to the budget constraint (20) and the employment law of motion (5), the latter of

which can be written as

Nt = (1− δt)Nt−1 + quut, (22)

where we have used the definition of the job finding probability qut = mt
ut

, with the measure

of job seekers ut given by Eq. (1). In the optimizing decisions, the household takes the

economy-wide job finding rate qut as given.

Define the employment surplus (i.e., the value of employment relative to unemployment)

as SHt ≡ 1
Λt

∂Vt(Bt−1,Nt−1)
∂Nt

, where Λt denotes the Lagrangian multiplier for the budget con-

straint (20). We show in the Appendix that the employment surplus satisfies the Bellmand

equation

SHt = wt − φ−
χ

Λt

+ EtDt,t+1(1− qut+1)(1− δt+1)SHt+1, (23)

where Dt,t+1 ≡ βθt+1Λt+1

Λt
is the stochastic discount factor, which applies to both the house-

hold’s intertemporal optimization and the firms’ decisions.

The employment surplus has a straightforward economic interpretation. If the household

adds a new worker in period t, then the current-period gain would be wage income net of the

opportunity costs of working, including unemployment benefit and the disutility of working.

The household also enjoys the continuation value of employment if the employment relation

continues. Having an extra worker today adds to the employment pool tomorrow (if the

employment relation survives job separation); however, adding a worker today would also

reduce the pool of searching workers tomorrow, a fraction qut+1 of whom would be able to

find jobs. Thus, the marginal effect of adding a new worker in period t on employment in
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period t + 1 is given by (1 − qut+1)(1 − δt+1), resulting in the effective continuation value of

employment shown in the last term of Eq. (23).

We also show in the appendix that the household’s optimizing consumption-savings deci-

sion implies the intertemporal Euler equation

1 = EtDt,t+1rt. (24)

II.4. The Nash bargaining wage. When a job match is formed, the wage rate is deter-

mined through Nash bargaining. The bargaining wage optimally splits of the joint surplus

of a job match between the worker and the firm. The worker’s employment surplus is given

by SHt in Eq. (23). The firm’s surplus is given by Jet − Jvt . The possibility of automation

affects the value of a vacancy, and thus indirectly affects the firm’s reservation value and

their bargaining decisions.

The Nash bargaining problem is given by

max
wt

(
SHt
)b

(Jet − Jvt )1−b , (25)

where b ∈ (0, 1) represents the bargaining weight for workers.

Define the total surplus as

St ≡ Jet − Jvt + SHt . (26)

Then the bargaining solution is given by

Jet − Jvt = (1− b)St, SHt = bSt. (27)

The bargaining outcome implies that the firm’s surplus is a constant fraction 1 − b of the

total surplus St and the household’s surplus is a fraction b of the total surplus.

The bargaining solution (27) and the expression for household surplus in equation (23)

together imply that the Nash bargaining wage wNt satisfies the Bellman equation

b

1− b
(Jet − Jvt ) = wNt − φ−

χ

Λt

+ EtDt,t+1(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1). (28)

II.5. Government policy. The government finances unemployment benefit payments φ for

unemployed workers through lump-sum taxes. We assume that the government balances the

budget in each period so that

φ(1−Nt) = Tt. (29)
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II.6. Search equilibrium. In a search equilibrium, the markets for bonds and goods all

clear. Since the aggregate bond supply is zero, the bond market-clearing condition implies

that

Bt = 0. (30)

Goods market clearing requires that consumption spending, automation costs, and va-

cancy creation costs add up to aggregate production. This requirement yields the aggregate

resource constraint

Ct + κvt + (1− qvt )vt
∫ x∗t

0

xdG(x) +

∫ Jvt

0

edF (e) = Yt, (31)

where Yt denotes aggregate output.

Aggregate output is sum of goods produced by workers and by robots. Specifically, it is

given by

Yt = ZtNt + ZtζtAt. (32)

III. Empirical Strategies

We solve the model by log-linearizing the equilibrium conditions around the deterministic

steady state.4 We calibrate a subset of the parameters to match steady-state observations

and the empirical literature. We estimate the remaining structural parameters and the shock

processes to fit U.S. time-series data.

We focus on the parameterized distribution functions

F (e) =
(e
ē

)ηv
, G(x) =

(x
x̄

)ηa
, (33)

where ē > 0 and x̄ > 0 are the scale parameters and ηv > 0 and ηa > 0 are the shape

parameters of the distribution functions. We set ηv = 1 and ηa = 1, so that both the

vacancy creation cost and the automation cost follow a uniform distribution.5 We estimate

the scale parameters ē and x̄ and the shock processes by fitting the model to U.S. time series

data.

4Details of the equilibrium conditions, the steady state, and the log-linearized system are presented in

the appendix.
5Our assumption of the uniform distribution for the vacancy creation cost is in line with Fujita and

Ramey (2007). We have estimated a version of the model in which we include the parameter ηa in the set

of parameters to be estimated. We obtain a posterior estimate of ηa = 1.007 and very similar estimates for

the other parameters. For simplicity and ofr obtaining closed-form solution for the steady state equilibrium

we assume that ηa = 1 in our benchmark model.
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III.1. Steady state equilibrium and parameter calibration. Table 1 shows the cali-

brated parameter values. We consider a quarterly model. We set β = 0.99, so that the model

implies a annualized real interest rate of about 4 percent in the steady state. We set α = 0.5

following the literature (Blanchard and Gaĺı, 2010; Gertler and Trigari, 2009). In line with

Hall and Milgrom (2008), we set b = 0.5 and φ = 0.25. Based on the data from JOLTS, we

calibrate the steady-state job separation rate to δ̄ = 0.10 at the quarterly frequency. We set

ρo = 0.03, so that robots depreciate at an average annual rate of 12 percent. We normalize

the level of labor productivity to Z̄ = 1 and automation-specific productivity to ζ̄ = 1.

We target a steady-state unemployment rate of U = 0.058, corresponding to the average

unemployment rate in the period from 1951 to 2018. The steady-state employment is given

by N = 1−U , hiring rate by m = δ̄N , and the number of job seekers by u = 1−(1−δ̄)N . The

job finding rate is qu = m
u

. We target a steady-state job filling rate qv of 0.71 per quarter, in

line with the calibration of den Haan et al. (2000). The implied stock of vacancies is v = m
qv

.

The scale of the matching efficiency is then given by µ = m
uαv1−α

= 0.6629. We set the flow

cost of operating robots to κa = 0.98. Given the average productivities Z̄ = ζ̄ = 1, this

implies a quarterly profit of 2 percent of the revenue by using a robot for production. The

steady-state automation value Ja can then be solved from the Bellman equation (15).

Conditional on Ja and the estimated values of ē and x̄ (see below for estimation details),

we use the vacancy creation condition (11), the automation adoption condition (16), and

law of motion for vacancies (3) to obtain the steady-state probability of automation, which

is given by

qa =
Ja

x̄+ βē(1− qv)v
.

Given qa and v, the law of motion for vacancies implies that the flow of new vacancies

is given by η = qa(1 − qv)v. The vacancy value is then given by Jv = ēη. The stock of

automation A can be solved from the law of motion (13), which reduces to ρoA = qa(1 −
qv)v = η in the steady state. Thus, in the steady state, the newly created vacancies equal

the flow of automated jobs that become obsolete. The law of motion for employment implies

that, in the steady state, the flow of hiring equals the flow of separated employment relations.

With A and N solved, we obtain the aggregate output Y = Z̄(N + ζ̄A). We calibrate

the vacancy posting cost to κ = 0.0884, so that the steady-state vacancy posting cost is one

percent of aggregate output (i.e., κv = 0.01Y ).

Given Jv and Ja, we obtain the cutoff point for robot adoption x∗ = Ja−βJv. The match

value Je can be solved from the Bellman equation for vacancies (12), and the equilibrium

real wage rate can be obtained from the Bellman equation for employment (10). Steady-

state consumption is solved from the resource constraint (31). We then infer the value of

χ = 0.7267 from the expression for bargaining surplus in Eq. (28).
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III.2. Estimation. We now describe our estimation approach.

III.2.1. Data and measurement. We fit the DSGE model to four quarterly U.S. time series:

the unemployment rate, the job vacancy rate, the growth rate of average labor productivity

in the non-farm business sector, and the growth rate of the real wage rate. The sample

covers the range from 1951:Q1 to 2018:Q4.

The unemployment rate in the data (denoted by Udata
t ) corresponds to the end-of-period

unemployment rate in the model Ut. We demean the unemployment rate data (in log units)

and relate it to our model variable according to

ln(Udata
t )− ln(Ūdata) = Ût, (34)

where Ūdata denotes the sample average of the unemployment rate in the data and Ût denotes

the log-deviations of the unemployment rate in the model from its steady-state value.

Similarly, we use demeaned vacancy rate data (also in log units) and relate it to the model

variable according to

ln(vdatat )− ln(v̄data) = v̂t, (35)

where v̄data denotes the sample average of the vacancy rate data and v̂t denotes the log-

deviations of the vacancy rate in the model from its steady-state value. Our vacancy series

for the periods prior to 2001 is the vacancy rate constructed by Barnichon (2010) based on

the Help Wanted Index. For the periods after 2001, we use the JOLTS vacancy rate.

In the data, we measure labor productivity by real output per person in the non-farm busi-

ness sector. We use the demeaned quarterly log-growth rate of labor productivity (denoted

by ∆ ln pdatat ) and relate it to our model variable according to

∆ ln(pdatat )−∆ ln(pdata) = Ŷt − N̂t − ( ˆYt−1 − ˆNt−1), (36)

where ∆ ln(pdata) denotes the sample average of productivity growth, and Ŷt and N̂t denote

the log-deviations of aggregate output and employment from their steady-state levels in our

model.

We measure the real wage rate in the data by the real compensation per worker in the

non-farm business sector. We relate the observed real wage growth (denoted by ∆ ln(wdatat ))

to the model variables by the measurement equation

∆ ln(wdatat )−∆ ln(wdata) = ŵt − ŵt−1, (37)

where ∆ ln(wdata) denotes the sample average of wage growth in the data and ŵt denotes

the log-deviations of real wages from its steady-state level in the model.
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III.2.2. Prior distributions and posterior estimates. The prior and posterior distributions of

the estimated parameters from our benchmark model are displayed in Table 2.

The priors for the structural parameters ē and x̄ are drawn from the gamma distribution.

We assume that the prior mean of each of these three parameters is 5, with a standard devi-

ation of 1. The priors of the persistence parameter of each shock follow the beta distribution

with a mean of 0.8 and a standard deviation of 0.1. The priors of the volatility parameter of

each shock follow an inverse gamma distribution with a prior mean of 0.01 and a standard

deviation of 0.1.

The posterior estimates and the 90 percent probability intervals for the posterior distri-

butions are displayed in the last three columns of Table 2. The posterior mean estimate

of the vacancy creation cost parameter is ē = 9.5693. The posterior mean estimates of

the automation cost parameter is x̄ = 2.4349. These parameters imply a steady-state au-

tomation probability of about 18 percent per quarter, which lies in the range estimated in

the empirical literature (Frey and Osborne, 2015; Nedelkoska and Quintini, 2018). The 90-

percent probability intervals indicate that the data are informative about these structural

parameters.

The posterior estimation suggests that the shocks to both the neutral technology and the

discount factor are highly persistent, whereas the automation-specific shock is less persis-

tent but more volatile. The 90-percent probability intervals suggest that the data are also

informative for these shock processes.

IV. Economic implications

We now examine the model’s transmission mechanism and its quantitative performance

for explaining the labor market dynamics.

IV.1. The model’s transmission mechanism. The equilibrium dynamics in our model

are driven by both the exogenous shocks and the model’s internal propagation mechanism.

To help understand the contributions of the shocks and the model’s mechanism, we examine

forecast error variance decompositions and impulse response functions.

IV.1.1. Forecast error variance decompositions. Table 3 displays the unconditional forecast

error variance decompositions for the four observable labor market variables used for our

estimation.6

The variance decompositions suggest that the fluctuations of unemployment and vacancies

are mostly driven by the neutral technology shock and the discount factor shock. In line with

6We have also computed the conditional forecast error variance decompositions with forecasting horizons

between 4 quarters and 16 quarters and found that they deliver the same message as the unconditional

variance decomposition.
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the literature (Hall, 2017; Leduc and Liu, 2019), the discount factor shock accounts for over

half of the variances of unemployment and vacancies. In our model, the procyclical threat

of automation dampens real wage adjustments and thus amplifies the impact of technology

shocks on labor market variables. The amplification mechanism is quantitatively important.

As shown in Table 3, the neutral technology shock accounts for over 40 percent of the

fluctuations in unemployment and vacancies. The job separation shock is not important for

these labor market variables, consistent with Shimer (2005).

The automation-specific shock does not directly contribute much to the fluctuations in

unemployment and vacancies; instead, the threat of automation works to amplify the effects

of the other shocks. This amplification mechanism works through endogenous variations in

the probability of automation, driven by other shocks such as the neutral technology shock

and the discount factor shock. As shown in the table, these two shocks are both important,

and they together explain over 95 percent of the fluctuations in the automation probability.

In our model, goods produced by workers and by robots are perfect substitutes. Thus,

the actual adoption of robots has a direct job-displacement effect. However, automation

also boosts employment through two channels. First, the option of automating an unfilled

job position raises the present value of a vacancy, encouraging firms to create more vacan-

cies. Second, the threat of automation strengthens the firm’s bargaining power in wage

negotiations because it raises the firm’s outside option, leading to muted wage increases in

a business cycle boom. This endogenous real wage rigidity helps amplify the responses of

unemployment and vacancies to technology shocks and discount factor shocks. The general

equilibrium job-creating effects of automation counteracts the direct job-displacing effects,

and the net effect on employment depends on parameter values. With our estimated pa-

rameters, we show that automation amplifies employment fluctuations. In the next section,

we will elaborate the specific channels for the general equilibrium effects of automation with

the help of impulse responses.

While the threat of automation dampens wage adjustments, the actual adoption of robots

raises labor productivity. Through these channels, the automation-specific shock plays a

quantitatively important role in driving fluctuations of the growth rates of both labor pro-

ductivity and real wages. The shock accounts for about 33 percent of the variance of pro-

ductivity growth and 49 percent of that of real wage growth.

Perhaps not surprisingly, the neutral technology shock is important for labor productivity

fluctuations, explaining about half of its variance.7 The shock also accounts for about a

7In the standard DMP version of our model without automation, labor productivity fluctuations would

be entirely driven by the neutral technology shock.
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quarter of the variance of real wage growth. The discount factor shock explains the remaining

fluctuations (about 20 percent) in labor productivity and real wage growth.

IV.1.2. Impulse responses. To understand the transmission mechanism of the model, we

examine the impulse responses of several key labor market variables following each shock.

We also highlight the role of automation in the model’s transmission mechanism by examining

some counterfactual models without automation.

Figures 1 shows the impulse responses to a positive neutral technology shock in the bench-

mark model. The shock leads to persistent declines in unemployment and persistent increases

in vacancies and hiring. The neutral technology shock increases the productivity of all jobs

(operated by a worker or a robot), so that the net value of automation rises, leading to an in-

creased probability of robot adoption. Since an unfilled job position can be automated more

easily, the vacancy value rises, encouraging firms to create more vacancies. The increase in

vacancy value also strengthens the firm’s bargaining power in wage negotiations, dampening

the responses of real wages. With more jobs automated, labor productivity increases persis-

tently, reinforcing the initial postive impact of the shock. The increase in labor productivity,

coupled with muted wage responses, implies persistent declines in the labor income share.

Automation amplifies not just the neutral technology shock, but also the discount factor

shock, as shown in Figure 2. A positive discount factor shock generates a persistent boom

in employment, vacancies, and hiring by raising the present values of a job match, an open

vacancy, and a worker’s employment surplus. The shock also raises the present value of

automation, and therefore leading to an increase in the probability of robot adoption. The

increased probability of automation raises the present value of a vacancy, stimulating the

incentive to create new vacancies. With more vacancies created, the job finding rate increases,

amplifying the employment boom. Following a positive discount factor shock, the increased

threat of automation leads to a modest short-run decline in the real wage rate. Although

the shock originates from the demand side, it has a positive impact on labor productivity

because of the increased adoption of automation. With muted wage responses, the increases

in labor productivity leads to a decline in the labor income share.

The job separation shock raises both unemployment and vacancies and mechanically boosts

hiring through the matching function, as shown in Figure 3. This finding is consistent with

Shimer (2005), who argues that the counterfactual implication of the job separation shock

on the correlation between unemployment and vacancies renders the shock unimportant

for explaining the observed labor market dynamics. The shock reduces the automation

probability because it increases the vacancy value without affecting the automation value.

Labor productivity increases slightly because the decline in employment outpaces the decline
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in aggregate output, a part of which is produced with robots. The shock also leads small

declines in real wages and the labor income share.

Figure 4 shows the impulse responses to a positive automation-specific shock. The shock

directly raises the value of automation. The increased probability of automation raises the

vacancy value and boosts the incentive for vacancy creation. With more job openings, the job

finding rate increases, raising hiring and reducing unemployment. Since a greater fraction

of output is produced with robots, labor productivity improves. The increased threat of

automation weakens the worker’s bargaining power, leading to a decline in the real wage

rate. The improvement in labor productivity and the reduction in the real wage rate lead to

a persistent decline in the labor income share.

IV.2. The role of automation in the propagation mechanism. To isolate the role

of endogenous automation decisions in driving the labor market dynamics, we consider a

counterfactual specification of “no automation,” which is a version of our benchmark model

with all automation-related variables held constant at their steady-state levels and with

no automation-specific shocks. To highlight the effect of the threat of automation on the

worker’s bargaining power in wage negotiations, we also compare our benchmark model’s

impulse responses to a version of the “no automation” case, in which we also reduce the

bargaining weight for workers by a half (i.e., setting b = 0.25).

Figure 6 displays the impulse responses to a discount factor shock in the three models:

the benchmark model (the black solid lines), the counterfactual with no automation (the

blue dashed lines), and the counterfactual with no automation and a lower bargaining power

for workers (the red dashed and dotted lines).8 In the counterfactual with no automation,

the responses of unemployment, vacancies, and hiring to the shock are much more muted

than in the benchmark model. Without automation, lowering the workers’ bargaining power

helps amplify the labor market responses, but the magnitude of amplification is dwarfed by

that of the automation mechanism. In the counterfactuals without automation, real wages

rise slightly following the discount factor shock. In contrast, the threat of automation in

our benchmark model leads to modest short-run declines in the real wage rate. Without

automation, labor productivity is solely driven by the neutral technology shock, and it does

not respond to the discount factor shock. Thus, without automation, the labor income

share rises slightly, reflecting the increases in the real wage rate. The no-automation model

generates procyclical labor income share even if the real wage responses are mechanically

muted by reducing the workers’ bargaining power. With automation, our benchmark model

8We report the impulse responses to the neutral technology shock and the job separation shock for the

counterfactuals in the appendix. Since automation is turned off in both counterfactual specifications, the

automation-specific shock is irrelevant for studying these counterfactuals.
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predicts that the discount factor shock raises the labor productivity persistently since the

shock raises the value of automation and leads to more robot adoptions. The increase in

labor productivity and the modest declines in the real wage rate imply a countercyclical

labor income share.

IV.2.1. Automation threat and labor market dynamics. Our model predicts that the threat of

automation dampens wage adjustments and amplifies labor market fluctuations. By raising

labor productivity while muting wage responses, automation also implies a countercyclical

labor income share. Is the automation mechanism quantitatively important? To examine the

empirical importance of the automation mechanism, we compare our model’s predictions for

the unemployment rate and the labor income share with those from counterfactuals without

the automation channel.

Our estimated model implies that the probability of automation is procylical, rising in

business cycle booms and falling in recessions. Figure 7 shows the smoothed series of the

automation probability obtained from our estimated model, and confirms the procyclical

behavior of the automation probability.

Since the option of automation raises the value of a job vacancy, it encourages job creation,

which more than offset the direct job-displacing effect of automation, amplifying unemploy-

ment fluctuations. This is illustrated by Figure 8, which shows the smoothed series of

unemployment from our estimated benchmark model (the blue solid line) and that from a

counterfactual model with no automation (the red dashed line). The smoothed series from

our benchmark model are identical to the actual series in the data because we estimate our

model to fit those series. The “no automation” counterfactual is a version of our benchmark

model with all the automation-related variables held constant at their steady-state values and

without automation-specific shocks. The gap between the blue line and the red line shows

the contribution of the automation mechanism and the automation shock to unemployment

fluctuations. Evidently, procyclical automation threat is crucial for explaining the observed

unemployment dynamics. For example, after the 2008-09 Great Recession, the model with-

out automation predicts incorrectly that the unemployment rate would have reached a peak

of 6.5 percent by the end of 2011, while the actual peak was much higher at more than

10 percent, and it occurred at least two years earlier. The counterfactual model without

automation also missed the magnitude and persistence of the declines in the unemployment

rate in the recent few years: it predicts that the unemployment rate should stay at about

5.5 percent by the end of 2018, whereas in the data, the unemployment rate was under 4

percent. Thus, the automation mechanism significantly amplified procyclical fluctuations in

employment.
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Figure 9 shows the labor income share implied by our estimated model (the blue solid

line) and that from a counterfactual model without automation (the red dashed line). Since

we estimate the benchmark model to fit both labor productivity growth and real wage

growth, we can recover the labor income share from the smoothed series of real wages and

labor productivity. We do the same for the counterfactual model with no automation, but

otherwise with the same parameters and shock processes. The figure shows that automation

has played a quantitatively important role in explaining the observed labor share fluctuations.

In the counterfactual model without automation, the predicted labor income share (the red

line) declined steadily throughout the period from 1980 to 2018. The actual labor share (the

blue line) has also declined since 1980, and the decline accelerated sharply since the early

2000s. The counterfactual path of the labor share has trended down together with the actual

labor share until 2009 (although it misses the short-run fluctuations). After 2009, the two

paths diverged: while the actual labor share fell sharply, the counterfactual model predicts

that the labor share in 2018 should have stayed at roughly the pre-recession level.

The divergence between the two paths after 2009 highlights the importance of the automa-

tion channel in explaining the observed labor share dynamics. As illustrated by Figure 7, the

post-2009 period experienced high automation probability, The increased automation prob-

ability raises the firm’s reservation value in wage bargaining and dampens wage increases.

Indeed, as shown in Figure 10, automation has contributed to lowering real wages since the

early 2000s, with the wage-depressing effects particularly pronounced after the Great Reces-

sion. At the same time, the increased robot adoption has boosted labor productivity since

the early 2000s, as shown in Figure 11. Thus, with the automation channel turned on, our

benchmark model predicts a sharp decline in the labor share.

Of course, the actual labor productivity growth in the post-recession period has been

significantly slower than that observed in the late 1990s and 2000s (Fernald, 2015). From

the lens of our model, this slowdown in labor productivity growth is driven by persistent

negative shocks to the neutral technology, partly offset by positive automation shocks. Had

there been no increases in automation, labor productivity growth would have been even

slower since the mid-2000s.

V. Conclusion

We have studied how automation interacts with labor market dynamics in a DMP frame-

work that incorporates endogenous automation decisions. The option to automate a job

position induces a job-ceation incentive, which offsets the direct job-displacing effects of au-

tomation, and can thus potentially amply unemployment fluctuations. Procyclical threat

of automation raises the firm’s reservation value in wage bargaining, dampening increases
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in real wages in a business cycle boom, also amplying fluctuations in unemployment and

vacancies. Furthemore, actual adoptions of robots raise labor productivity. With muted

wage increases and amplified labor productivity, automation leads to declines in the labor

share in good economic times.

To assess the quantitative importance of the automation channel, we estimate our DMP

model with automation to fit the U.S. time series data. We find that automation contributed

significantly to the observed sluggish wage growth and the rapid declines in the labor share

during the post-Great Recession period.

Of course, many other factors may have contributed to the wage and labor share dynamics

since the early 2000s. Examples include declines in workers’ bargaining power, increases in

market concentration, and greater use of offshoring, particular related to China’s entry into

the WTO. Assessing the quantitative importance of these alternative mechanisms requires a

coherent framework that can be used to fit the actual time series data. Our study represents

a small but promising first step in that direction.
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Table 1. Calibrated parameters

Parameter Description value

β Subjective discount factor 0.99

φ Unemployment benefit 0.25

α Elasticity of matching function 0.50

µ Matching efficiency 0.6629

δ̄ Job separation rate 0.10

ρo Automation obsolescence rate 0.03

κ Vacancy posting cost 0.0884

b Nash bargaining weight 0.50

ηv Elasticity of vacancy creation cost 1

ηa Elasticity of automation cost 1

κa Flow cost of automated production 0.98

χ Mean value of preference shock 0.7267

Z̄ Mean value of neutral technology shock 1

ζ̄ Mean value of equipment-specific technology shock 1
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Table 2. Estimated parameters

Priors Posterior

Parameter description Type [mean, std] Mean 5% 95%

ē scale for vacancy creation cost G [5, 1] 9.5693 7.4499 11.8171

x̄ scale for robot adoption cost G [5, 1] 2.4349 1.7760 3.0439

ρz AR(1) of neutral technology shock B [0.8, 0.1] 0.9704 0.9616 0.9800

ρθ AR(1) of discount factor shock B [0.8, 0.1] 0.9832 0.9717 0.9942

ρδ AR(1) of separation shock B [0.8, 0.1] 0.9425 0.9149 0.9677

ρζ AR(1) of automation-specific shock B [0.8, 0.1] 0.7565 0.7201 0.7937

σz std of tech shock IG [0.01, 0.1] 0.0111 0.0103 0.0119

σθ std of discount factor shock IG [0.01, 0.1] 0.0146 0.0112 0.0180

σδ std of separation shock IG [0.01, 0.1] 0.0500 0.0462 0.0537

σζ std of automation-specific shock IG [0.01, 0.1] 0.0423 0.0307 0.0535

Note: This table shows our benchmark estimation results. For the prior distribution types,

we use G to denote the gamma distribution, B the beta distribution, and IG the inverse

gamma distribution.
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Table 3. Forecasting Error Variance Decomposition

Variables Neutral Discount Job Automation-

technology shock factor shock separation shock specific shock

Unemployment 42.84 56.34 0.51 0.32

Vacancy 40.96 53.85 4.76 0.43

Productivity growth 49.02 17.93 0.17 32.88

Real wage growth 26.58 23.99 0.61 48.82

Automation probability 46.93 42.09 0.05 10.94

Note: The numbers reported are the posterior mean contributions (in percentage terms) of

each of the four shocks in the benchmark estimation to the forecast error variances of the

variables listed in the rows.
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Figure 1. Impulse responses to a positive neutral technology shock in the

benchmark model.
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Figure 2. Impulse responses to a positive discount factor shock in the bench-

mark model.
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Figure 3. Impulse responses to a job separation shock in the benchmark model.
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Figure 4. Impulse responses to a positive automation-specific shock in the

benchmark model.
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Figure 5. Impulse responses to a positive neutral technology shock in the

benchmark model (black solid lines), the counterfactual with no automation

(blue dashed lines), and the counterfactual with no automation and low worker

bargaining power (red dashed and dotted lines).
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Figure 6. Impulse responses to a positive discount factor shock in the bench-

mark model (black solid lines), the counterfactual with no automation (blue

dashed lines), and the counterfactual with no automation and low worker bar-

gaining power (red dashed and dotted lines).
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Figure 7. The smoothed time series of the automation probability.
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Figure 8. The smoothed time series of unemployment in the benchmark

model (the blue solid line) versus the counterfactual with no automation (the

red dashed line). The counterfactual is a version of our benchmark model

with all automation related variables (including automation specific shocks)

kept at their steady-state values. The benchmark model series is identical

to the actual data because we estimated the model to fit the unemployment

series.
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Figure 9. The smoothed time series of the labor share in the benchmark

model (the blue solid line) versus the counterfactual with no automation (the

red dashed line). The counterfactual is a version of our benchmark model

with all automation related variables (including automation specific shocks)

kept at their steady-state values. The benchmark model series is identical to

the actual data because we estimated the model to fit the real wage and labor

productivity series, and the labor share can be directly inferred from these two

variables.
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Figure 10. The smoothed time series of real wages in the benchmark model

(the blue solid line) versus the counterfactual with no automation (the red

dashed line). The counterfactual is a version of our benchmark model with

all automation related variables (including automation specific shocks) kept

at their steady-state values. The real wage levels are computed based on the

smoothed real wage growth series in each model (with the initial value fixed

at the actual real wage level in the beginning of the sample).
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Figure 11. The smoothed time series of labor productivity in the benchmark

model (the blue solid line) versus the counterfactual with no automation (the

red dashed line). The counterfactual is a version of our benchmark model with

all automation related variables (including automation specific shocks) kept at

their steady-state values. The labor productivity levels are computed based on

the smoothed labor productivity growth series in each model (with the initial

value fixed at the actual productivity level in the beginning of the sample).
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Appendix A. Summary of equilibrium conditions

A search equilibrium is a system of 19 equations for 19 variables summarized in the vector[
Ct, rt, Yt,mt, ut, vt, q

u
t , q

v
t , q

a
t , Nt, Ut, ηt, J

e
t , J

v
t , J

a
t , At, x

∗
t , w

N
t , wt

]
.

We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

1 = Etβθt+1
Ct
Ct+1

rt, (A1)

(2) Matching function

mt = µuαt v
1−α
t , (A2)

(3) Job finding rate

qut =
mt

ut
, (A3)

(4) Vacancy filling rate

qvt =
mt

vt
, (A4)

(5) Employment dynamics:

Nt = (1− δt)Nt−1 +mt, (A5)

(6) Number of searching workers:

ut = 1− (1− δt)Nt−1, (A6)

(7) Unemployment:

Ut = 1−Nt, (A7)

(8) Vacancy dynamics

vt = (1− qvt−1)(1− qat−1)vt−1 + δtNt−1 + ηt, (A8)

(9) Automation dynamics

At = (1− ρo)At−1 + (1− qvt )qat vt, (A9)

(10) Employment value

Jet = Zt − wt + Etβθt+1
Ct
Ct+1

{
(1− δt+1)Jet+1 + δt+1J

v
t+1

}
, (A10)

(11) Vacancy value

Jvt = −κ+ qvt J
e
t + (1− qvt )qat Jat + (1− qvt )(1− qat )Etβθt+1

Ct
Ct+1

Jvt+1. (A11)
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(12) Automation value

Jat = Ztζt − κat + (1− ρo)Etβθt+1
Ct
Ct+1

Jat+1, (A12)

(13) Automation threshold

x∗t = Jat − Etβθt+1
Ct
Ct+1

Jvt+1. (A13)

(14) Robot adoption

qat =

(
x∗t
x̄

)ηa
(A14)

(15) Vacancy creation

η =
Jvt
ē

(A15)

(16) Aggregate output

Yt = ZtNt + ZtζtAt. (A16)

(17) Resource constraint

Ct + κvt +
ηa

1 + ηa
qat x

∗
t (1− qvt )vt +

1

2
ηtJ

v
t = Yt, (A17)

(18) Nash bargaining wage:

b

1− b
(Jet − Jvt ) = wNt − φ− χCt + Et

βθt+1Ct
Ct+1

(1− qut+1)(1− δt+1)
b

1− b
(Jet+1 − Jvt+1). (A18)

(19) Actual real wage (with real wage rigidity)

wt = wγt−1(wNt )1−γ, (A19)


